The generator matrix 1 0 0 0 0 1 1 1 2X 1 1 1 1 1 0 1 0 1 1 X 1 1 0 1 1 1 1 2X 1 1 0 1 1 2X 1 X 1 0 2X 1 1 1 1 1 1 1 2X 1 1 0 2X 0 0 1 1 1 1 1 0 2X 1 1 X 1 1 1 X X 1 1 1 1 1 1 1 1 0 1 X 1 2X 1 1 0 0 1 1 X 1 1 X 1 0 1 0 0 0 2X 1 2X+1 1 0 X 2X+2 2 1 1 2X+2 1 2 1 1 2X+1 X+2 0 2X X 2X+2 X+2 1 X+1 2 1 2X X+1 1 0 0 1 1 2X X+1 2 1 1 0 X+1 2X 1 0 2 2X 1 1 X 2 X 2X+2 X+1 1 1 1 2X+2 X+1 1 X+2 X+1 1 1 1 0 0 2X+2 1 2X+1 0 1 X+1 1 X+1 1 2X+2 1 X+2 2X+1 1 1 X+2 2X+2 X 0 2X+1 X 2X+1 0 0 1 0 0 0 0 0 0 X X X X 2X 2X 2X X 2X 2X X 2X 2X 2X 2X 2X X 1 X+2 X+2 2X+1 2 X+2 X+1 2X+1 X+2 1 2 2 1 1 2 X+1 X+2 2 2X+2 X+1 2X+1 X+2 2 1 2X+1 2X+1 1 2 1 X+2 2 2 2X+2 2X+2 X+1 2X+2 2 2X+2 X+1 1 2X+2 1 X+2 2X+2 2X X+2 X+1 X 2X+1 2X+2 2X 2X+1 X+1 2X+2 2 2X+1 X+1 2X 1 X+2 X+1 1 X+1 2X+1 1 1 0 0 0 1 0 2X+1 1 2X+2 X+1 X+1 X+2 2X 2X+1 0 2 X+2 2 2X+2 2X 1 X+2 X 1 0 2 2X+1 2X 1 2X+2 X+1 X+2 X+1 X+1 2 2 1 2X+1 0 1 2X+2 X+1 1 X+1 0 X 2X+1 2X+2 2X+1 X X X 2X X X+2 X X 2 0 X 2X 2X 2X X+1 2X+2 0 X 2 X+1 2X+2 X 2 2X+1 X 2 X+1 1 1 1 0 2X+2 X+1 X 2 X+2 X 0 X+2 2X+2 2X 2X+1 X+1 2X+2 0 0 0 0 1 2X+2 X X+2 X+2 2X+1 X X+1 2X X+1 2X+1 2X+2 0 2X 0 2X+1 2X+1 2 2X+1 2 2X+1 1 2X 0 0 2 2 1 X+2 2X X+2 2X 1 X+2 X+2 2X+2 X+1 1 2X+2 X 0 X+1 2X+1 2X 1 2X+2 2X+2 X X+1 X+2 X+2 2X+2 X+2 2X+1 0 1 2X+2 X+2 2X+2 1 2X+1 1 2X 2X+1 1 2X+1 2 0 X+2 1 X 2X X X X+1 2 2X+1 2X+1 2X+2 2 2X 0 X+1 0 2X 2 2X+1 2X generates a code of length 92 over Z3[X]/(X^2) who´s minimum homogenous weight is 167. Homogenous weight enumerator: w(x)=1x^0+462x^167+432x^168+1548x^170+1020x^171+2958x^173+1754x^174+3930x^176+1914x^177+4566x^179+2392x^180+5262x^182+2704x^183+5448x^185+2730x^186+5058x^188+2496x^189+4278x^191+1886x^192+3048x^194+1290x^195+1770x^197+694x^198+732x^200+288x^201+234x^203+60x^204+72x^206+12x^207+10x^210 The gray image is a linear code over GF(3) with n=276, k=10 and d=167. This code was found by Heurico 1.16 in 78.3 seconds.